Matching BiHom-Rota-Baxter Algebras and Related Structures

نویسندگان

چکیده

In this paper, we introduce the notions of matching BiHom-Rota-Baxter algebras, BiHom-(tri)dendriform BiHom-Zinbiel algebras and BiHom-pre-Lie algebras. Moreover, study properties relationships between categories these BiHom-algebraic structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Differential Rota-baxter Algebras

Abstract. A Rota-Baxter operator of weight λ is an abstraction of both the integral operator (when λ = 0) and the summation operator (when λ = 1). We similarly define a differential operator of weight λ that includes both the differential operator (when λ = 0) and the difference operator (when λ = 1). We further consider an algebraic structure with both a differential operator of weight λ and a...

متن کامل

Free Rota – Baxter Algebras and Rooted Trees

A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota–Baxter algebras were obtained by Rota and Cartier in the 1970s and a third ...

متن کامل

An Identity in Rota-baxter Algebras

We give explicit formulae and study the combinatorics of an identity holding in all Rota-Baxter algebras. We describe the specialization of this identity for a couple of examples of Rota-Baxter algebras.

متن کامل

BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras

A BiHom-associative algebra is a (nonassociative) algebra A endowed with two commuting multiplicative linear maps α, β : A → A such that α(a)(bc) = (ab)β(c), for all a, b, c ∈ A. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new ...

متن کامل

Rota–baxter Algebras, Singular Hypersurfaces, and Renormalization on Kausz Compactifications

We consider Rota-Baxter algebras of meromorphic forms with poles along a (singular) hypersurface in a smooth projective variety and the associated Birkhoff factorization for algebra homomorphisms from a commutative Hopf algebra. In the case of a normal crossings divisor, the Rota-Baxter structure simplifies considerably and the factorization becomes a simple pole subtraction. We apply this form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13122345